Hydrogen bond dynamics of superheated water and methanol by ultrafast IR-pump and EUV-photoelectron probe spectroscopy.
نویسندگان
چکیده
Supercritical water and methanol have recently drawn much attention in the field of green chemistry. It is crucial to an understanding of supercritical solvents to know their dynamics and to what extent hydrogen (H) bonds persist in these fluids. Here, we show that with femtosecond infrared (IR) laser pulses water and methanol can be heated to temperatures near and above their critical temperature Tc and their molecular dynamics can be studied via ultrafast photoelectron spectroscopy at liquid jet interfaces with high harmonics radiation. As opposed to previous studies, the main focus here is the comparison between the hydrogen bonded systems of methanol and water and their interpretation by theory. Superheated water initially forms a dense hot phase with spectral features resembling those of monomers in gas phase water. On longer timescales, this phase was found to build hot aggregates, whose size increases as a function of time. In contrast, methanol heated to temperatures near Tc initially forms a broad distribution of aggregate sizes and some gas. These experimental features are also found and analyzed in extended molecular dynamics simulations. Additionally, the simulations enabled us to relate the origin of the different behavior of these two hydrogen-bonded liquids to the nature of the intermolecular potentials. The combined experimental and theoretical approach delivers new insights into both superheated phases and may contribute to understand their different chemical reactivities.
منابع مشابه
Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol.
Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl(4) and HOD in H(2)O are studied using the shortest mid-IR pulses (<50 fs, <4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (>400 c...
متن کاملHydrogen bond dynamics in aqueous NaBr solutions.
Hydrogen bond dynamics of water in NaBr solutions are studied by using ultrafast 2D IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments. The hydrogen bond structural dynamics are observed by measuring spectral diffusion of the OD stretching mode of dilute HOD in H(2)O in a series of high concentration aqueous NaBr solutions with 2D IR vibrational echo spectrosc...
متن کاملUltrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging
Submitted for the DAMOP09 Meeting of The American Physical Society Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging OLIVER GESSNER, OLEG KORNILOV, CHIA WANG, MATHEW LEONARD, ANDREW HEALY, Lawrence Berkeley National Laboratory, STEPHEN LEONE, DANIEL NEUMARK, University of California Berkeley & Lawrence Berkeley National Laborator...
متن کاملWater dynamics--the effects of ions and nanoconfinement.
Hydrogen bond dynamics of water in highly concentrated NaBr salt solutions and reverse micelles are studied using ultrafast 2D-IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments performed on the OD hydroxyl stretch of dilute HOD in H(2)O. The vibrational echo experiments measure spectral diffusion, and the pump-probe experiments measure orientational relaxatio...
متن کاملDynamics of water, methanol, and ethanol in a room temperature ionic liquid.
The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 36 شماره
صفحات -
تاریخ انتشار 2014